Solvability of Rado Systems in D-sets
نویسنده
چکیده
Rado’s Theorem characterizes the systems of homogenous linear equations having the property that for any finite partition of the positive integers one cell contains a solution to these equations. Furstenberg and Weiss proved that solutions to those systems can in fact be found in every central set. (Since one cell of any finite partition is central, this generalizes Rado’s Theorem.) We show that the same holds true for the larger class of D-sets. Moreover we will see that the conclusion of Furstenberg’s Central Sets Theorem is true for all sets in this class.
منابع مشابه
On the maximum size of Erdős-Ko-Rado sets in $$H(2d+1, q^2)$$
Erdős-Ko-Rado sets in finite classical polar spaces are sets of generators that intersect pairwise non-trivially. We improve the known upper bound for Erdős-Ko-Rado sets in H(2d + 1, q) for d > 2 and d even from approximately q +d to q 2+1.
متن کاملOn the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملOn the Solvability of Systems of Bilinear Equations in Finite Fields
can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Gyarmati and Sárközy [3] generalized the results on the solvability of equation (1.1) to finite fields. They also study the solvability of other (higher degree) algebraic equations with solutions restricted to “large” subsets of Fq, where Fq denote the finite field of q elements. Using exponential sums, Hart and Iosevich [5] studied similar prob...
متن کاملSolvability of infinite system of nonlinear singular integral equations in the C(Itimes I, c) space and modified semi-analytic method to find a closed-form of solution
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008